Introduction to
Oracle & XML

Version 1.3.2
February 2022

ot dimitral

Introduction to Oracle and XML version 1.3.2 February 2022 nikos dimitrakas

Table of contents

1 INTRODUCGTION ...coutiiiiutiiiiineiiitnniisiiessisiiesssosiesssstessssstesssssssssssssssssssssssssssssnsssssssssssssenssssssnssssssnssssssnnssss 3
1 0 o SRR 3
1.2 PREREQUISITES iiiiiiiiiieieieieieieieieeesaeasasaeaeaesasesesasesasasasasanasasasnsasnsassnssnsasnsnsssssssasssssesssesesesesesesssessnnes saeaaaaaseesensns 3
L3 S TRUCTURE ..ttt itiiie i e e e e e e e e e et e e e e et e e e e e e s e s e s e s e s e s e e aaaas s asababa s absbabebebeb et e s et e te b ettt eaee 2aaaaaaaaaaaaaeenanenns 3

2 ORACLE 18C.....ciiuiiieeiiiniiienniieniirnsiieniisessisssissseresserssissssstsssstassssssssesssssssssnssssssstsssstasssssssssnssssssssnsssassssnnss 3
2.1 INSTALLATION 11ttteeeseuuurreesesssasussereeessassnsseesesssnsssssanesessassssssessesssasssssesesesssssssssssesssasssssssesesssassnssnes snsseseessssssnsnns 3

2.1.1 Y =1 4 [ol=X RS 7
2.2 SQOL DEVELOPER .ceettttieieieieieieeeieeeeeeeeeeeeeeseeeteaatetatataaeesseseeeeeesesessseseseesseesesesesesesesesesesesesesesesesssssssesssasssesssesssesesens 8

3 SAIVIPLE DATA ...ovtiiiieniiiiienniiiieneisienssssiesssssissssistssssssssssssssssssssssessssstessssssssssssssssssssssnsssssensssssenssssssnssssss 10
3L XIMIL DATA TYPE ctttitiiieieieeeieeeeeeeeeee e e e e e eeeeeeeeaeaeaaaaaaeaaaaaaaaaaaaaaaaaaaaaaaaaesaaeaeeeesasasesasasesesesasesesasasasasasasanassresenesesennns 11

4 EXAIMPLEScuuiiiiiiiiiinuiiiiiniiiienessiiessisiiesssstsssssssmesssssiesssenssss 11
4,1 XMLELEMENT, XMLFOREST, XMLATTRIBUTES........ttiiieeeeeiitreee e ettt e e e e e setinre e e s e e e sanraaa e e e s s e snnnaneeeaeeenns 11
0 {1 | 7Y C T URR T 13
L IV 1@ 10 1 2 PN 14
L Y I 72 = X PN 15
LI Y 1)) 1S 16
4.6 METHOD/FUNCTION EXTRACT AND FUNCTION EXTRACTVALUE .ccvviiiiieteie e cetteeee ittt e e eaee e s steeesesnteesssanesssnesesssnsenesnes 17
4.7 METHOD/FUNCTION EXISTSNODEuvtieiieteieieteeeeeteeessesteesessseeesesssessssseeessssesesasseessesesessssesessssssessasssesssssesessnns 17
A 8 XIMILCOLATTV AL 1ttt sttt ettt 4ttt et e aeeeaeeeeeeeaeeeeees nnnnnnnsnsnnn 18
A9 DIMIL FOR XIMIL...tttteeee ettt ettt et e e e sttt e e e e e st a e e e e e e saeaa b aeaeeesannsaabeeeeeesaassasaaaeeesanssatsaeeaassnseeeesssnnssrennes 18

4.9.1 XQUEIY LrANSFOIM ..ottt ettt ettt ettt st e st e st e s e e st e sateenateensseenssasnsnessesn 19

E R N 0 1Y, | 7 Tox o o £ X3S 19
4.9.3 (R Y=1 ST 20
4.9.4 (o =] (=2 (=2 20
4.9.5 L= 0L [=2 PP U PR 21

E N R (-1 0] Lo [ol -2 SRS 22
4.9.7 UpdateXML (AePreCated)ouuueieeceeeeeieeeeeee e et eeeeete e et ttaa e et tee e e s taaaessaaaestasaeesseaeeanees 22
ViR S -1 (-4 =), (1Y [R (0 (=] T =Tolo [=) S 23
4.9.9 Insert and Append functions (deprecated)............cuuuuieeeeeeeeiiieeeeee et 23

4. 10 OTHER XIMILTY PE METHODS ... eeeeeeeeeeesesesesesesesesesese e sanannnnsannnnnnnnsnsnsssnsssssssnsssnssssssssssnsssssnsnsnsnsssnsnsnsnnnns 24
4.1 XIVILTRANSFORM ..ttttuueeeteeetttunuueaeeeeeetsassenaeseeeeeesnnnseesessessnsnnssesesessesssnsseseeessssssnnnseseeeesssssnnsesseessssnnnnnessnnneesaens 26
4,12 XQUERY FUNCTION ORAIVIEW ..uuuuuuuuuuuuuunnnnnnnnnnuunsannnnsssssesesssssssssssssssssssssssssssssesessseseeseteseeeemeeeterereretereretereraeaaens 27
5 EPILOGUE........ciiiuiiiiiiniiiitneiiienesisiiessistiasssssssssssssessssstesssnsssssssssssssnsssssenssss 28

Introduction to Oracle and XML version 1.3.2 February 2022 nikos dimitrakas

1 Introduction

This compendium gives a short introduction to Oracle 19c and its facilities for database
administration. We discuss installing Oracle 19c and using SQL Developer. After that, there is
an introduction to some Oracle specific XML features accompanied by SQL/XML features
supported by Oracle. All the examples are tested on Oracle 19.3 for Windows on a Windows
10 64-bit, but they should work in a similar manner on any platform. It is recommended that
you use Oracle for Windows.

The latest version of this compendium is available at
http://coursematerial.nikosdimitrakas.com/oraclexml/ where all other relevant files can also
be found.

1.1 Oracle

Oracle is one of the major DBMSs and its latest versions have added support for XML mostly
according to the latest SQL standards. The main tool for working with an Oracle database (in
version 19) is called SQL Developer. SQL Developer requires Java (also an Oracle product).
The Oracle Enterprise Manager is a web-based tool for administrating an Oracle server and
its database objects.

1.2 Prerequisites

It is required that the reader is familiar with database administration and SQL and has a good
understanding of XML. This introduction focuses on Oracle specific XML features, so most
basic database concepts will not be explained in detail. All the examples can be executed in
any interface tool for Oracle (like SQL Plus or TOAD) but the recommended tool is SQL
Developer (which is bundled with Oracle).

1.3 Structure

In the next chapter we will take a quick look at the installation and configuration of Oracle
and at SQL Developer. After that we will look at the sample data used in the examples to
come. In chapter 4 we will go through several examples using the sample data and Oracle's
XML features.

2 Oracle 19c

Oracle 19c is available for free by Oracle for non-commercial use. The installation file is a zip-
file available on oracle.com. On the same site there are detailed instructions for installation,
configuration and other tasks.

2.1 Installation

Start by downloading the appropriate installation files. This compendium is based on version
19.3 for Windows x64. In order to download the installation files, you may need to create a
free account.

Unzip the file in a folder prior to initiating the installation. Make sure the folder name does
not contain spaces or other special characters. Run setup.exe to start the installation.

Introduction to Oracle and XML

version 1.3.2 February 2022 nikos dimitrakas

In the first step “Configuration Option”, select “Create and configure a single instance

database”:

| £ Oracle Database 19¢ Installer - Step 1 of 16

-] >
Select Configuration Option 1 C ORACLE
Database
)T'\ Configuration Option Select any of the following install options.
).i.\ Database Installation Options '3_5'_' Create and configure a single instance database.
’]\ This optien creates a starter database.
I () Sat Up Software Only
I Note 1: For RAC instal, do “Set Up Software Only” and then execute DBCA (Database Configuration Assistant) from the oracle home.
I Note 2: To upgrade an Oracle Database, do 'Set Up Software Only” and then execute DBUA (Database Upgrade Assistant) from the oracle home.
/]\
| Help | | Next = J Cancel
Next, choose a Desktop class installation:
|£| Oracle Database 19¢ Installer - Step 2 of 15 - O *
Select System Class 1 C ORACLE
Database

/T\ Configuration Option
s System Class

|
T Oracle Home User

3

Fa

Help

() Deskiop class
Choose this option if you are instaling on a laptop or desktop class system. This option includes a starter database and allows minimal configuration.

() Server class

Choose this option if you are instaling on a server class system, which Oracle defines as a system used in a production data center. This option allows for
more advanced configuration options.

< Back ” Next = Cancel

Introduction to Oracle and XML version 1.3.2 February 2022 nikos dimitrakas

In the next step, choose the user to be used for running the Oracle services. We use the
Windows Built-in Account, but you may use a different user if you prefer.

| £| Oracle Database 19¢ Installer - Step 3 of 15 - O *
Specify Oracle Home User 1 ¢ RACI
Database
% Conhigrabon Opton For enhanced security, you may choose to run Windows Services from this Oracle home with a non-administrator account. Oracle recommends that you choose
/T\ a Virtual Account or specify a standard Windows User Account for this purpose.
A System Class B
I () Use Virtual Account
lw/ Oracle Home User
+ Installafion Location () Use Existing Windows User
I () Create New Windows User
/I\
I @ -:_}Z- Use Windows Built-in Account
N

| < Back ” Next = | Cancel ‘

Now, choose where Oracle should be installed and specify to use the Enterprise Edition and
the default character set. Specify a unique global database name and set the system

password. You will need to use this password later, to connect to the database. Also specify
that a Container database should not be created.

|£:| Oracle Database 19¢ Installer - Step 4 of &

O X
Typical Install Configuration 1 C ORACLE
Database

% Conhigrabon Opton Perform full database installation with basic configuration.
;T\ System Class Oracle base: |D-\Dracle193 |'| | Browse.. |
'y Qracle Home User

1 Software location: D:\Oracle19install

e Typical Installation

+ Prerequisite Checks Database fils location: |D:\0racle1 9.J\oradata | | Browse.. |
I Database edition: |Enterprise Edition "

I Character s=: |unicode (AL32UTFS) ~|

Global database name: |nrc| nikos kth se

Password:

ssssssss LConfirm password. ssssssss

@ |:| Create as Container database

< Back ” Next = Cancel

Introduction to Oracle and XML version 1.3.2 February 2022 nikos dimitrakas

Oracle will now check that everything is ok and present a summary before the installation
can begin.

| £ Oracle Database 19¢ Installer - Step 6 of 8

- O *
- 19¢ OrACLE
Database

Configuration Option = Oracle Database 19¢ Installer

Sysiem Class =+ Global settings

- Oracle Home User: NT AUTHORMY\SYSTEM [Edi]
Install method: Desktop installation [Edit]

Oracle Home User
fpncallictatag Database edition: Enterprize Edition (Create and configure a database) [Edif]
Oracle base: D:\Oracle19.3 [Edif]
- Software Iocation: D\Oracle19install
CraMTS Port Number: 45152
B Database information

Prereguisite Checks

Summary

C—(—E€———F—F

-~ Configuration: General Purpose / Transaction Processing

- Global database name: orcl.nikos.kth.se [Edif]

- Oracle system identifier (SID): orcl [Edit]

- Allocated memory: 3251 MB

- Automatic memory management option: FALSE

Database character set : ALJ2UTFS (Unicode UTF-8 Universal character set) [Edit]
- Management method: Database express

- Database storage mechanism: File system

-~ Database file location: D\Oracle19 3\oradata [Edit]
- Recovery: Disabled

Save Response File.

An important field in this summary is the Oracle system identifier (SID). This will be relevant
later, when creating a connection in SQL Developer.

Press "Install" and the installation will begin. The installation process will take a while.

| £ Oracle Database 19¢ Installer - Step 7 of 8

—] >
Install Product 1 € ORACLE
Database
rProgress
A
I % |
/I\
I Processing Oracle Database Extensions for NET 18.0.0.0.0
I [Status
T Configure Local Mode Pending
o Install Product = Prepare Pending
i « Setup Pending
~ Setup Oracle Base Pending
Oracle Database configuration Pending

1 C ORACLE’

Database

Cancel

Introduction to Oracle and XML version 1.3.2 February 2022 nikos dimitrakas

Eventually, the installation will be completed:

|£| Oracle Database 19¢ Installer - Step 8 of 8 - O *

S 1 C ORACLE’

Database

The configuration of Oracle Database was successful.

Note:

Oracle Enterprise Manager Database Express URL: hitps:/localhost:5500/em

|
i Finish

| Help | | Close ‘

In the note, you will notice the Enterprise Manager Database Express URL. This URL opens
the Oracle Enterprise Manager where you can manage your database instance. You can
manage performance settings, users, tables, views, triggers, etc. Log in as SYSTEM with the
password you specified earlier and take a look.

In the start menu, you will find several shortcuts to different Oracle tools. We will use SQL
Developer. SQL Developer is bundled with Oracle, but requires Java. The bundled version is
also not the latest. It can therefore be a good idea to download the latest SQL Developer
separately and try it to see if it works better than the bundled one. The recommended
version as of February 2022 is 21.4.2. Some older versions (18.x) have problems displaying
XML and many versions (17.x — 21.x) have a bug making Local connections impossible. TNS-
connections can be used instead.

SQL Developer does not require any installation. Just extract the files of the downloaded zip-
file in a directory and run the sgldeveloper.exe. The bundled version is located in a folder
named sqldeveloper among the extracted files of the installation zip-file.

When starting SQL Developer for the first time, you will have to point to the JDK directory. It
is recommended to use the latest version of Java 8 or later. The versions used in this
introduction are JDK 11.0.12 and SQL Developer 21.4.2.

2.1.1 Services
During the installation several Windows services were created:

Introduction to Oracle and XML version 1.3.2 February 2022 nikos dimitrakas

i Services - m} x

File Action Yiew Help

e |H = HE »mup

=

. Services (Local) Mame Description Status Startup Type Log On As QR
‘£ OraclelobSchedulerORCL Disabled Local System
‘&) OracleQraDB19Homel MTSRecoveryService Running Automatic Local System
‘&) OracleOraDB19Homel TMSListener Running Automatic Local System
‘&) OracleRemExecServiceV2 Running Manual Local System
&} OracleServiceORCL Running Automatic Local System
‘&) OracleVssWriterORCL Running Automatic Local System ©
Extended)\ Standard/

The one called OracleService is the main service for the database instance. The suffix ORCL is
the System Identifier we saw in the installation summary earlier.

2.2 SQL Developer

SQL Developer is a tool for performing common database tasks easier. It provides several
wizards for database object creation, code completion for SQL, monitoring tools, etc.

When you start SQL Developer, you need to create a connection or use an existing one. To
work locally, create a connection of Type TNS and select the Network alias that matches the
System ldentifier (Type Local/Bequeath does not work with SQL Developer 17-21) and log in
as SYSTEM with your password.

B Mew / Select Database Connection x

Connection Name Connection Details Name |LOCALHOST | |?|_ Color

Database Type |Drade "

User Info ProxyUser

Authentication Type |Default =

Username |sysbem | Role |defau\t -

Password | | [] Save Passward

Connection Type |WS i
Details Advanced

(2) Metwork Alias JoReL E

() Connect Identifier

Status :

Help Save Clear Test Connect Cancel

Once the connection has been created, you will see several panes. On the left you should
have the connections pane where you can explore all the objects of your connection. On the
right, you have one or more worksheets where you can write SQL commands or scripts. Each
worksheet is associated to one connection. Below the worksheet area, there is the result
area (or at least it will show up there after you execute a command). The placement of each
pane is freely configurable, so it could look like this:

Introduction to Oracle and XML

version 1.3.2 February 2022

nikos dimitrakas

[Oracle SQL Developer

File Edit View Navigate Run Team Jools Window Help

GoEad9®Q-0- & @

Connections |

*-RTHD
[oracle Connections
=@ Loca-osT

{§3 Tables (Filtered)

Packages

Queues Tables

>

<

& LoCAHOST x|

o

PER-BARR &e N

IS LocALHOST

Worksheet | Query Buider

SELECT 'nikes', 2022 FROM dual

B> query... x
A & @) & 50| AlRons Ferched: 1in 0,022 seconds

LocaLHOST x|

& svsTEm

[Tables

i Nkos' | {2022

S o

[EE] AQS_INTERNET_AGENTS

[AQS_INTERNET_AGENT_PRIVS
AQS_KEY_SHARD_MAP

[AQS_QUELES

[AQS OUEUE TABLE:

>

<

saL History |

~Log X =

FXYa

Filter

QL
SELECT 'nikos', 2022 FROM dual

Cornection TimeStamp § Type
LOCALHOST _ [2023-02-15 ...[sQL

~
v

Q- Contains

I <

>

Sequ... Connection Name

61 |

Eapsed S0L
|2 |SELECT ‘nikos', 2022 FROM dual
= e T e

i
Messages

LoggngPage * |Statements x | < > =

Different panels can be shown/hidden with the menus under View. Panes can be moved
around with drag and drop.

There are many things that can be configured in SQL Developer under Tools > Preferences.
One thing that may be important to fix is the date format. In the Preferences window under
Database NLS, Date Format, Decimal Separator, etc. can be configured. It is recommended

you set the Date Format to YYYY-MM-DD.

When running scripts or XQuery in SQL Developer, the result is presented in text form. How
wide the result is and how much of each value is shown depends on different settings. To
configure appropriate values, use the following commands and adjust the numbers:

SET LONG 1000;

SET LONGCHUNKSIZE 100;

SET PAGESIZE 100;

The first one decides the number of characters per value to show in the result.

The second one decides the length of each line in the result.

The third one decides the number of rows in the result before repeating the headings.

Introduction to Oracle and XML version 1.3.2 February 2022 nikos dimitrakas

3 Sample Data

In this chapter we will take a look at the data that we will use in the examples to follow. We
will use a database with both relational data and XML data. That is, a database with tables,
columns, keys, integrity constraints, etc. but with a couple of columns containing XML
documents (each cell being an XML document).

! :fD — ¥ - Publisher
;E; Title % Wame
Translations OriginallLanguage Strest
Book o0 Genre — % Book City
oo % Author PastalCode
Country
1D -

Mame
Infa

The columns Edition.Translations and Author.Info contain XML according to the following
XML Schemas. The rest of the columns are defined as VARCHAR2 and INTEGER. The only
column that allows NULL is the column Book.Genre.

XML Schema for documents in Edition.Translations:

<?xml version="1.0"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema">
<element name="Translations">
<complexType>
<sequence>
<element name="Translation" minOccurs="0" maxOccurs="unbounded">
<complexType>
<attribute name="Language" type="string" use="required"/>
<attribute name="Publisher" type="string" default="N/A"/>
<attribute name="Price" type="integer" use="required"/>
</complexType>
</element>
</sequence>
</complexType>
</element>
</schema>

The value of the attribute Publisher must correspond to a value in the column
Publisher.Name. This kind of constraint could be implemented as a set of triggers.

10

Introduction to Oracle and XML version 1.3.2 February 2022 nikos dimitrakas

XML Schema for documents in Author.Info:

<?xml version="1.0"?>
<schema xmlins="http://www.w3.0rg/2001/XMLSchema">
<element name="Info" type="InfoType"/>
<complexType name="InfoType">
<all>
<element name="Email" type="string"/>
<element name="YearOfBirth" type="integer"/>
<element name="Country" type="string"/>
</all>
</complexType>
</schema>

The entire script for creating and populating the database can be found on
http://coursematerial.nikosdimitrakas.com/oraclexml/

The script can be run through SQL Developer. It creates a schema called bookdb as well as all
the tables and other relevant objects in this schema.

3.1 XML data type

Oracle has an XML data type called XMLTYPE. This data type can be used with and without
an XML Schema, thus allowing for validation or no validation. There is no support for DTD.
Any schema to be used must be already registered. The validation performed is only
structural. Full validation can be done with the function XMLIsValid which can be used in a
constraint in order to ensure that only fully validated documents make it into the database.

In the provided database script, there is no validation. On the other hand, the XML data type
always checks that the input is well-formed.

4 Examples

In this chapter we will go through some examples of SQL/XML in Oracle and some examples
that use Oracle specific XML features. All the examples in this chapter assume that the
database has been created and that the default schema is bookdb.

4.1 XMLELEMENT, XMLFOREST, XMLATTRIBUTES

Let's start off with a few simple queries using some basic SQL/XML publishing functions. We
want to create an XML document for each author. The root element shall be "Author", the
name shall be an attribute and the author info (which is already an XML document) shall be
the content. The following SQL statement does that.

SELECT XMLELEMENT(NAME "Author", XMLATTRIBUTES(name AS "Namn"), info)
FROM author

11

Introduction to Oracle and XML version 1.3.2 February 2022 nikos dimitrakas

Here is a portion of the result (2 rows):

<Author Namn="John Craft">
<Info>
<Email>jc@jc.com</Email>
<Country>England</Country>
<YearOfBirth>1948</YearOfBirth>
</Info>
</Author>
<Author Namn="Arnie Bastoft">
<Info>
<Email>bastoft@frei.at</Email>
<Country>Austria</Country>
<YearOfBirth>1971</YearOfBirth>
</Info>
</Author>

If we want to create an XML document for each publisher, it may be better to use
XMLFOREST, since the table publisher has many columns that we may want to have as
elements. Let's assume that for each publisher, we want to have a root element "Publisher’
and that all the columns should get their own elements. The following statement does that.

1

SELECT XMLELEMENT(NAME "Publisher", XMLFOREST(name AS "Name", street AS "Street",
city AS "City", postalcode AS "PostalCode", country AS "Country"))
FROM publisher

For each row in the table publisher, we get an XML document like this:

<Publisher>
<Name>ABC International</Name><Street>7th Bear St.</Street><City>Berlin</City>
<PostalCode>44500</PostalCode><Country>Germany</Country>

</Publisher>

One thing that is important when working with XML is the case of the element names and
attribute names. In the above examples, we used the double quotes in order to enforce the
desired case. Oracle's default is to capitalize column names when generating XML. So the
following statement would capitalize everything except for "City":

SELECT XMLELEMENT(NAME Publisher, XMLFOREST(name, street AS StrEEt, city AS "City"))
FROM publisher

The result looks like this:
<PUBLISHER>

<NAME>ABC International</NAME><STREET>7th Bear St.</STREET><City>Berlin</City>
</PUBLISHER>

12

Introduction to Oracle and XML version 1.3.2 February 2022 nikos dimitrakas

4.2 XMLAGG

XMLAGG is an aggregate function and as such, it complies with the rules of aggregate
functions. If it is used without a GROUP BY clause, then all the rows will become one group.
It can of course be mixed with non-aggregated columns in the SELECT clause, but then all
non-aggregated columns must also appear in the GROUP BY clause.

If we want to expand on the example from the previous section and put all the authors in
one XML document, we need to use XMLAGG. Any column that appears inside the XMLAGG
function is considered to be aggregated. The following statement creates a root element
"Authors" and aggregates all the Author elements into it.

SELECT XMLELEMENT(NAME "Authors",

XMLAGG(XMLELEMENT(NAME "Author",
XMLATTRIBUTES(name AS "Name"),
info)))

FROM author

The result looks like this:

<Authors>
<Author Name="John Craft"><Info><Email>jc@jc.com</Email>
<Country>England</Country><YearOfBirth>1948</YearOfBirth></Info></Author>
<Author Name="Arnie Bastoft"><Info><Email>bastoft@frei.at</Email>
<Country>Austria</Country><YearOfBirth>1971</YearOfBirth></Info></Author>
<Author Name="Meg Gilmand"><Info><Email>megil@archeo.org</Email>
<Country>Australia</Country><YearOfBirth>1968</YearOfBirth></Info></Author>

</Authors>

XMLAGG in combination with GROUP BY is relevant when we need some nesting. Perhaps
we want to group the publishers per country. The result may be one Country element per
country containing one or more Publisher elements. If we want to also have a root element,
a second XMLAGG is required.

SELECT XMLELEMENT(NAME "PublishersByCountry", XMLAGG(countryxml))
FROM (SELECT XMLELEMENT(NAME "Country",
XMLATTRIBUTES(country AS "Name"),
XMLAGG(XMLELEMENT(NAME "Publisher",
XMLATTRIBUTES(name AS "Name", city AS "City")))) AS countryxml
FROM publisher
GROUP BY country) innertable

The nested statement produces one Country element for each country. The result is a table
with as many rows as there are countries (groups). The outer statement aggregates these
Country elements and makes them the content of the element PublishersByCountry. In the
nested statement the column country is the only one appearing in the SELECT clause outside
the aggregate function, and is thus the only column appearing in the GROUP BY clause. The

13

Introduction to Oracle and XML version 1.3.2 February 2022 nikos dimitrakas

result of the nested statement is a table with the alias innertable and it has a column named
countryxml. The result of the entire statement has the following structure:

<PublishersByCountry>
<Country Name="England">
<Publisher Name="Benton Inc" City="London"/>
</Country>
<Country Name="Sweden">
<Publisher Name="Bé&sta Bok" City="Stockholm"/>
<Publisher Name="KLC" City="Uppsala"/>
<Publisher Name="SCB" City="Stockholm"/>
</Country>

</PublishersByCountry>

4.3 XMLQUERY

The XMLQUERY function can be used when we want to execute XQuery within an SQL
statement. The XMLQUERY function can also accept parameters that map values of the SQL
scope to variables in the XQuery scope. We may want to retrieve the name and country of
each author:

SELECT name, XMLQUERY('Si//Country/text()' PASSING info AS "i" RETURNING CONTENT)
FROM Author

In this case the XQuery expression is quite a simple one, but it can also be complicated. The
PASSING keyword allows us to map the current value of the column info as an XQuery
variable (in this case "i" which is then referred to as "S$i"). In Oracle, the keywords
RETURNING CONTENT are required and there is no alternative. The result has two columns:

John Craft England
Arnie Bastoft Austria
Meg Gilmand Australia
Chris Ryan France
Alan Griff USA
Marty Faust USA

The result of the XMLQUERY function is actually of the XML data type, but Oracle will
serialize it automatically when showing the result. Here is another example that illustrates
that the XMLQUERY function returns XML:

SELECT name, XMLQUERY('Sx/Country/text()'
PASSING XMLQUERY('$i//Country'
PASSING info AS "i"
RETURNING CONTENT) AS "x"
RETURNING CONTENT)
FROM Author

14

Introduction to Oracle and XML version 1.3.2 February 2022 nikos dimitrakas

This produces the same result as the previous statement, but finds the country in two steps.
The nested XMLQUERY function in Oracle returns an XML value, but its root node is not the
Country element, even though it appears to be. In the outer XMLQUERY call, we must
therefore go from the root to the Country element. This behaviour is due to the RETURNING
CONTENT keywords that create a document node as the root node of the result. RETURNING
SEQUENCE (which is not yet support by Oracle according to the documentation, but appears
to work) would let the Country element be the root node.

If SQL Developer shows (XMLTYPE) instead of the serialized version, it may be necessary to
serialize the result with XMLCAST or if it’s a text node, by using the XPath function string().

XMLQUERY can also be used to create XML from a string. So XMLQUERY('<X>123</X>'
RETURNING CONTENT) will return an XML value. This is because the string '<X>123</X>'is a
valid XQuery statement.

4.4 XMLTABLE

When dealing with repeating elements in an XML document, we may want to break it down
into smaller XML-documents or even values. The XMLTABLE function can be used in the
FROM clause of a SELECT statement and it transforms the result of an XQuery statement into
a table. We may want to get one row per translation of each edition. The column
translations in the table Edition contains multiple Translation elements. So the following
statement splits them up and presents them one by one.

SELECT id, book, tt.column_value
FROM Edition, XMLTABLE('St//Translation' PASSING translations AS "t") AS tt

The result should look like this:

<Translation Language="German" Publisher="Kingsly" Price="130"/>
<Translation Language="French" Publisher="Addison" Price="135"/>
<Translation Language="Russian" Publisher="Addison" Price="125"/>
<Translation Language="Swedish" Price="340"/>

<Translation Language="French" Price="320"/>

NNR R R
NN R R R

The resulting column of the XMLTABLE function is called column_value when the keyword
COLUMNS is not present.

Just as with XMLQUERY the result of the XMLTABLE function is also wrapped inside a
document node. This can be illustrated with the following example, where in order to access
the Language attribute, we must go from the root (the document node) to the Translation
element node, to the attribute node:

SELECT id, book, XMLQUERY('/Translation/@Language'

PASSING tt.column_value RETURNING CONTENT)
FROM Edition, XMLTABLE('St//Translation' PASSING translations AS "t") AS tt
Using the keyword COLUMNS could also break down this further:

15

Introduction to Oracle and XML version 1.3.2 February 2022 nikos dimitrakas

SELECT id, book, tt.language, tt.price, tt.publisher
FROM Edition, XMLTABLE('St//Translation'
PASSING translations AS "t"
COLUMNS Language VARCHAR(15) PATH '@Language’,
Price INTEGER PATH '@Price’,
Publisher VARCHAR(30) PATH '@Publisher') AS tt

The translations XML is now fully shredded:

B Oracle SQL Developer - o x
File Edit View Mavigate Run Team Tools Window Help
Fo@a@9we0-0-:&- @
i ions X | —|[& cocurest x| ~o
*F-ATHED >EY-BRIBR | G¢ Y g} Locarost
[Orade Connections A | ['worksheet | quer
v Buider
=R~ JiocaosT L |
{23 Tables (Fitered) [E SELECT id, book, tt.language, tt.price, tt.publisher
[Views FROM Edition, XMLTABLE('$t//Translation’
Indexe: PASSING translations AS "t"
[l Packages COLUMNS Language VARCHAR(LS) PATH '@Language’,
[3) Procedures Price INTEGER PATH '@Frice’,
3 Functions Publisher VARCHAR(30) PATH '@Publisher') AS gp
(3] Operators ™=
-3 Queves -
[FA Queues Tables [Elscript output * | B> Query Resuit = }
Triggers
%ngs A 5 W) B 5o | Fetched 50 rowsin 0,20 seconds
[Sequences 410 |4 BOOK [} LANGUAGE |} PRICE |} PUBLISHER
- [Materislized Views i1 1|German 130/Kingsly ~
Materialized View Logs 2
Dla Synonyms 1 1|French 135/Rddison
G Pubiic Synonyms 3 1 1/Russian 125/2ddison
[Database Links 4 2 2|Swedish 340/(null)
- (4] Public Database Links s 2 Fi— 320/ (rull)
(& Directories
] 3 2|Swedish 390/KLC
LocaLHOST x| - 7| s 2[Frenen 330[KLC
8 sookce I 8 3 2[Chinese 280|Shou-Ling
9 4 2|French 320/KLC
& Tables ~| ~ | 4 2[1ealian 320[KLC
B3 auTHOR 1 4 2|Turkish 300(Turk &nd Turk
[AUTHORSHIP 12 4 2|Spanish 300{(null)
[ook 13 7 4Swedish 160/SCB
[E5 eprrion 14 4/German 140|{aull)
51 PUBLISHER 15 4[Russian 140RE
16 5| 2€0/Basta Bok
17| gl 270/Basta Bok
18| 13 5|German 310[ABC International v
sav History x | =
LAY Fiter
501 Connec tion TimeStamp § Type Executed Duration(s.
ISELECT id, book, tt.language, tt.price, tt,publisherFROM Edition, XMLT... LOCALHOST _[2022-02-15 ...[sQL 1 |o.28 | A
e e e s v
Q, - Contains < >

4.5 XMLEXISTS

XMLEXISTS is a function that can be used to express conditions based on the existence of a
particular XML node. We could for example find any books that have been translated to
German (i.e. they have an edition with a translation whose language is German):

SELECT title
FROM Book
WHERE id IN (SELECT book
FROM edition
WHERE XMLEXISTS('St//Translation[@Language="German"]'
PASSING translations AS "t"))

The nested statement does the work of finding the correct books, while the outer statement

retrieves the titles. As you can see, the result of the function is a boolean value, so it can be
used as a condition. The result looks like this:

16

Introduction to Oracle and XML version 1.3.2 February 2022 nikos dimitrakas

Misty Nights

Oceans on Earth
Contact

Music Now and Before
Musical Instruments

Le chateau de mon pere

4.6 Method/Function Extract and function ExtractValue

Oracle's method/function Extract and function ExtractValue can be used with XML objects
(values of the data type XMLTYPE) to retrieve XML fragments or values. They are deprecated
and the SQL/XML function XMLQUERY should be used instead. Here are some examples
anyway.

If we want to get the country of each author we could use any of the following:

SELECT name, a.info.extract('//Country/text()'), Extract(info, '//Country/text()"),
ExtractValue(info, '//Country')
FROM author a

The extract method and the Extract function return XML, so it is the exact node that is
returned. The ExtractValue function returns the value of the node and not the node itself.
The extract method (and any other XMLTYPE method) requires that the column containing
the XML object be qualified with an alias. Both of the following will therefore return an error
(even though at plain sight they appear to be correct).

SELECT name, info.extract('//Country')
FROM author

SELECT name, author.info.extract('//Country')
FROM author

Another important thing to remember is that the result of extract (method or function) will
be a new XML document with a document node as its root. This is the same behaviour as for
XMLQUERY which we discussed earlier.

4.7 Method/Function ExistsNode

The function ExistsNode and the corresponding XMLTYPE method existsNode can be used to
check the existence of a node for a specific XPath expression. They return 1 if the result is
not empty and 0 if the result is empty. We could for example find all the authors from
Sweden. Any one of the two conditions is enough.

SELECT name

FROM author a

WHERE ExistsNode(info, '//Country[. = "Sweden"]') = 1
OR a.info.existsNode('//Country[. = "Sweden"]') = 1

The result is the following:

17

Introduction to Oracle and XML version 1.3.2 February 2022 nikos dimitrakas

Jakob Hanson
Marie Franksson

This function/method is deprecated and the SQL/XML function XMLEXISTS should be used
instead.

4.8 XMLColAttVal

XMLColAttVal is a function that transforms one or more columns to an XML fragment. For
each column an element "column" is created and the value becomes the content. The
column's name is stored as the value of the attribute "name". The same result could of
course be produced with the standard publishing functions of SQL/XML. Here is an example:

SELECT XMLCOLATTVAL(name, country, city)
FROM Publisher

This produces the following result:

<column name = "NAME">ABC International</column>
<column name = "LAND">Germany</column>
<column name ="CITY">Berlin</column>

<column name = "NAME">Addison</column>
<column name = "LAND">France</column>
<column name ="CITY">Toulouse</column>

We could of course add a root element with XMLELEMENT. The following statements will
have the same result.

SELECT XMLELEMENT(NAME "Publisher", XMLCOLATTVAL(name, country, city))
FROM Publisher

SELECT XMLELEMENT(NAME "Publisher",
XMLELEMENT(NAME "column", XMLATTRIBUTES('NAME' AS "name"), name),
XMLELEMENT(NAME "column", XMLATTRIBUTES('COUNTRY"' AS "name"), country),
XMLELEMENT(NAME "column", XMLATTRIBUTES('CITY' AS "name"), city))

FROM Publisher

4.9 DML for XML

Oracle 12 is the first version of Oracle to support (in part) the XQuery Update Facility. In
earlier versions of Oracle, XML could be manipulated only with Oracle specific functions. In
this section we look at some examples using both techniques. But first a general introduction
to both techniques. Starting with version 12 the Oracle specific functions have been
deprecated are likely to be removed in version 13.

18

Introduction to Oracle and XML version 1.3.2 February 2022 nikos dimitrakas

4.9.1 XQuery transform

The XQuery transform statement makes a copy of an XML value, modifies it and returns it.
Technically, we could return something other than the modified copy, but that is hardly the
intended usage of the transform statement. The transform statement, being an XQuery
statement, must be used inside the function XMLQUERY. The PASSING keyword can be used
to pass an XML value from the SQL context to the XQuery context. The result of the
transform statement becomes the result of the function. The passed XML value itself is not
affected, which means that we need to use an SQL UPDATE in order to store the modified
value inside the table. So if we would like to change the information of an author, we would
use the following statement:

UPDATE author
SET info = XMLQUERY('transform-statement' PASSING info RETURNING CONTENT)
WHERE ...

The transform statement has three clauses and they are all required. A transform statement
has the following structure:

copy variable assignment
modify modify-expression
return return-expression

The variable assignment will most probably be used to create a copy of the passed value,
thus creating a copy to modify. The variable containing the copy will probably be the return-
expression. The modify-expression is where we can add, remove and alter the content of our
variable. The modify-expression can be any of the following expressions: delete, insert,
rename, or replace. In the following sections we will look at some examples that use the
different modify expressions.

4.9.2 DML functions

Oracle provides several functions for manipulating XML with operations similar to SQL
INSERT, UPDATE and DELETE. There is one function for update called UpdateXML, one
function for delete called DeleteXML and several functions for insert called InsertChildXML,
InsertChildXMLBefore, InsertChildXMLAfter, InsertXMLBefore, InsertXMLAfter and
AppendChildXML. All these functions work based on the same principal. They take an XML
value as a parameter and return a changed version of it. The original XML value is not
affected. That means that the column containing the original XML value has to be updated
with SQL UPDATE if the change is to become permanent. In this section we look at some
examples. For more details on these functions refer to the documentation.

If we compare these functions with the XQuery Update Facility, UpdateXML corresponds to
replace, DeleteXML corresponds to delete, Insert* and AppendChildXML correspond to
insert, and nothing corresponds to rename (we must instead delete the node and insert a

new one).

The XML DML functions are deprecated in Oracle 12 and will likely be removed in version 13.

19

Introduction to Oracle and XML version 1.3.2 February 2022 nikos dimitrakas

4.9.3 insert

When using a transform statement to add nodes to an XML value, you need to use an "insert
node" expression. The placement of the new node will be based on an XPath expression and
on the specified position keyword (before, after, as last, as first). We could, for example, add
a Website element to the info of the author Carl Sagan (this would actually violate the XML
Schema, but let's ignore that for the sake of this example). The following statement finds
Carl Sagan's row in the table author and updates the info column with the result of the
XMLQUERY function. The XMLQUERY function takes the current value of the column info and
adds a new element as the last child element of the root element.

UPDATE author
SET info = XMLQUERY(' copy Sres := Si
modify insert node element Website {"www.carlsagan.com"}
as last into Sres/Info
return Sres'
PASSING info AS "i" RETURNING CONTENT)
WHERE name = 'Carl Sagan'

Note that when using an "insert node" expression, the node specified as a position reference
for the new node must exist and must exist exactly once. So exactly one matching node for
Sres/Info must exist, or an error will be raised.

4.9.4 delete

If we want to remove a node, then we use the "delete node" expression in the modify
clause. We can for example remove the Email element in the info XML of Carl Sagan:

UPDATE author
SET info = XMLQUERY(' copy Sres := Si
modify delete node Sres/Info/Email
return Sres'
PASSING info AS "i" RETURNING CONTENT)
WHERE name = 'Carl Sagan'

If the XPath expression specified after "delete node" matches several nodes, then all of them
will be removed.

You can undo the change caused by the previous statement with the following statement:

UPDATE author
SET info = XMLQUERY(' copy Sres := Si
modify insert node element Email {"carlsagan@nasa.gov"}
as first into Sres/Info
return Sres'
PASSING info AS "i" RETURNING CONTENT)
WHERE name = 'Carl Sagan'

20

Introduction to Oracle and XML version 1.3.2 February 2022 nikos dimitrakas

4.9.5 rename

It is also possible to rename a node without having to remove it and create a new one. The
node's location and value will be unchanged. We could, for example, change the name of the
element Country to BirthCountry for all the authors (once again, this would violate the XML
Schema).

UPDATE author
SET info = XMLQUERY(' copy Sres := Si
modify rename node Sres/Info/Country as "BirthCountry"
return Sres'
PASSING info AS "i" RETURNING CONTENT)

The XPath expression specified after "rename node" must match exactly one node. In this
case it does, but what if we wanted to change all the Translation elements to Version
elements in the XML values stored in the column edition.translations? According to the XML
Schema there can be zero to many Translation elements in each Translations element. And
that would cause an error. Fortunately, FLWOR expressions can be nested in the modify
clause. We can instruct the modify clause to loop through all the Translation elements and
do the rename once for each matching element:

UPDATE edition
SET translations = XMLQUERY('copy Sres := Strans
modify for St in Sres//Translation
return rename node St as "Version"
return Sres'
PASSING translations AS "trans" RETURNING CONTENT)

You can undo the changes caused by the previous statements with these ones:

UPDATE author
SET info = XMLQUERY(' copy Sres := Si
modify rename node Sres/Info/BirthCountry as "Country"
return Sres'
PASSING info AS "i" RETURNING CONTENT)

UPDATE edition
SET translations = XMLQUERY('copy Sres := Strans
modify for St in Sres//Version
return rename node St as "Translation"
return Sres'
PASSING translations AS "trans" RETURNING CONTENT)

Note that when using a "rename node" expression, the node to be renamed must exist. This
can be easily checked with a WHERE clause in the SQL UPDATE statement.

21

Introduction to Oracle and XML version 1.3.2 February 2022 nikos dimitrakas

4.9.6 replace

It is also possible to replace a node with another node or sequence of nodes. A "replace
node" expression identifies one node with an XPath expression and then replaces it with a
node or a sequence of nodes. We can for example replace the Email element of Carl Sagan
with a Skype element:

UPDATE author
SET info = XMLQUERY(' copy Sres := Sinfo
modify replace node Sres//Email with element Skype {"carl.sagan.author"}
return Sres'
PASSING info AS "info" RETURNING CONTENT)
WHERE name = 'Carl Sagan'

A replace expression can also be used to replace the value of a node and not the node itself.
The keywords "value of" should be used in such case. We could for example change Carl
Sagan's year of birth (which is the content of the element YearOfBirth) to 1914.

UPDATE author
SET info = XMLQUERY(' copy Sres := Si
modify replace value of node Sres/Info/YearOfBirth with 1914
return Sres'
PASSING info AS "i" RETURNING CONTENT)
WHERE name = 'Carl Sagan'

If you want to restore Carl Sagan's info to the original value, just use the following
statement:

UPDATE author

SET info = '<Info><Email>carlsagan@nasa.gov</Email><Country>USA</Country>
<YearOfBirth>1913</YearOfBirth></Info>"'

WHERE name = 'Carl Sagan'

As with "inset node" and "rename node", "replace node" expressions may not specify an

XPath expression to a node that does not exist or that matches multiple nodes .

4.9.7 UpdateXML (deprecated)

The function UpdateXML is fairly simple. It takes three parameters: the original XML value,
an XPath expression identifying the node whose value is to be changed, and the new value. If
the XPath expression matches more nodes, then all of them will be updated. If the XPath
expression does not match any nodes, the result will be identical to the original XML value.

Let's say we want to change the e-mail address of the author Carl Sagan. We can use the
following UPDATE statement:

UPDATE author
SET info = UPDATEXML(info, '//Email/text()', 'carl@sagan.info')
WHERE name = 'Carl Sagan'

22

Introduction to Oracle and XML version 1.3.2 February 2022 nikos dimitrakas

This statement identifies the correct row in the author table and replaces the value of the
column info with a new value generated by the function UpdateXML. The function takes the
current value of the column info and replaces the text node with the new value. UpdateXML
always replaces the entire node so UPDATEXML(info, '//Email', 'carl@sagan.info') would
instead have removed the element node and created a text node.

The third parameter can be a string value or XML. If the node to be updated is an attribute
node, then the third parameter provides the new value for the node, but the node itself is
not replaced, just its value.

Here is another way to achieve the same result as with the previous statement:

UPDATE author
SET info = UPDATEXML(info, '//Email', XMLELEMENT(NAME "Email", 'carl@sagan.info'))
WHERE name = 'Carl Sagan'

This is obviously unnecessarily complex, since it recreates the entire element node instead of
just switching the text node.

4.9.8 DeleteXML (deprecated)

Removing a node is done with the function DeleteXML. It deletes any nodes matching the
specified XPath expression. We could for example remove the Email element node from Carl
Sagan's info XML (which would violate the XML Schema, but we can ignore that right now).

UPDATE author
SET info = DELETEXML(info, '//Email')
WHERE name = 'Carl Sagan'

If you want to restore Carl Sagan's info XML to the original, just use the following statement:

UPDATE author

SET info = '<Info><Email>carlsagan@nasa.gov</Email><Country>USA</Country>
<YearOfBirth>1913</YearOfBirth></Info>"'

WHERE name = 'Carl Sagan'

4.9.9 Insert and Append functions (deprecated)

The reason there are many functions for adding nodes, is that the relative position of the
added nodes needs to be specified. You may want to add a node before another node or
after another node, or perhaps as the last child node. Let's look at some examples. If we
want to add a Website element for Carl Sagan, we may use the function AppendChildXML:

UPDATE author

SET info = APPENDCHILDXML(info, '//Info',
XMLTYPE('<Website>www.carlsagan.com</Website>'))

WHERE name = 'Carl Sagan'

23

Introduction to Oracle and XML version 1.3.2 February 2022 nikos dimitrakas

This statement adds the new element node as the last child of the node matching the XPath
expression specified in the second parameter. In the previous statement we created an
XMLTYPE value from a string representation. Another way would be to use the
XMLELEMENT function:

UPDATE author
SET info = APPENDCHILDXML(info, '//Info',

XMLELEMENT(NAME "Website", 'www.carlsagan.com'))
WHERE name = 'Carl Sagan'

If we would prefer to add the Website element directly after the Email element, we can use
the function InsertXMLAfter:

UPDATE author
SET info = INSERTXMLAFTER(info, '//Email’,

XMLELEMENT(NAME "Website", 'www.carlsagan.com'))
WHERE name = 'Carl Sagan'

The created node becomes the next sibling to the node specified by the XPath expression. If
that XPath expression matches several nodes, then a new node will be added after each of
them.

If we want to add an attribute node, the function InsertChildXML may be the best choice.
Let's say that we want to add an attribute Launched to the Website element that we created
before and specify that Carl Sagan's website was launched in 1997. We could do that with
the following statement:

UPDATE author
SET info = INSERTCHILDXML(info, '//Website', '@Launched', 1997)
WHERE name = 'Carl Sagan'

The third parameter specifies the name of the node to be created. The at sign (@) indicates
that the node to be created shall be an attribute node. The fourth parameter specifies the
value of the new node. It can be of any type and it will be adapted to XML. If it is a date, time
or decimal, the current locale may affect the resulting layout.

4.10 Other XMLTYPE methods

Oracle has a number of extra methods that can be used on XMLTYPE objects. We have
already discussed some of them in previous sections. The methods getStringVal, getBLOBVal
and getCLOBVal are basically serialization methods that return the XMLTYPE object as a
String, BLOB and CLOB respectively. The method getNumberVal returns the value of the
object as a number. The object must have a value that is possible to convert to a number.
The XMLTYPE object must be a text node or attribute node. Here is a simple example:

SELECT XMLQUERY('99' RETURNING CONTENT).getNumberVal() + 1
FROM DUAL

24

Introduction to Oracle and XML version 1.3.2 February 2022 nikos dimitrakas

The result is 100. XMLQUERY returns 99 as an XMLTYPE object and the method retrieves its
value as a number. The following does not work because the first part of the plus operation
is not a number:

SELECT XMLQUERY('99' RETURNING CONTENT) +1
FROM DUAL

There are also some methods on the XMLTYPE that can return information about the XML
object. The method getRootElement returns the name of the root element unless the XML
object is a fragment and then the result is NULL. The method getSchemaURL returns the URL
of the XML Schema associated with the XML object. The method isFragment can be used to
check if an XML object is an XML fragment or an XML document. The method returns 1 or 0.
The method isSchemaValid can be used to validate the XML object given an XML Schema.
The method isSchemaBased checks if the object is associated with an XML Schema. The
method IsSchemaValidated checks if the object has already been validated based on its
associated XML Schema. It does not distinguish between not being valid and not having been
validated. The following statement uses some of these methods:

SELECT a.info.isSchemaBased(), a.info.isSchemaValidated(),
a.info.getRootElement(), a.info.isFragment()

FROM author a

WHERE id=1

The result is 0,0,'Info',0, which means that the XML object is not schema based, it has not
been validated, its root element is Info and it is not a fragment (it is an XML document).

There is also a method called transform, which can be used to apply an XSLT to the XML

object. This method is similar to the function XMLTransform, so they are both described in a
separate section.

25

Introduction to Oracle and XML version 1.3.2 February 2022 nikos dimitrakas

4.11 XMLTransform

If we want to use XSLT to transform XML objects, we have two options. There is a function
XMLTransform and a method transform. Both have the same result. The function requires
that the XML value to be transformed is specified as a parameter, while the method
operates on a specific XML object. We could for example apply the following XSLT to the info
XML of the authors.

<xsl:transform xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">
<xsl:output method="xml"/>
<xsl:template match="/">
<xsl:element name="Details">
<xsl:attribute name="Mailaddress"><xsl:value-of select="//Email"/></xsl:attribute>
<xsl:attribute name="Country"><xsl:value-of select="//Country"/></xsl:attribute>
<xsl:attribute name="Birthyear"><xsl:value-of select="//YearOfBirth"/></xsl:attribute>
</xsl:element>
</xsl:template>
</xsl:transform>

This XSLT restructures the information in the info XML and returns a Details element with
three attributes.

We could ask for the info XML of Carl Sagan, transformed according to the XSLT, with the
following statement:

SELECT XMLTRANSFORM(info,
'<xsl:transform xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">
<xsl:output method="xml"/>
<xsl:template match="/">
<xsl:element name="Details">
<xsl:attribute name="Mailaddress"><xsl:value-of select="//Email"/></xsl:attribute>
<xsl:attribute name="Country"><xsl:value-of select="//Country"/></xsl:attribute>
<xsl:attribute name="Birthyear"><xsl:value-of select="//YearOfBirth"/></xsl:attribute>
</xsl:element>
</xsl:template>
</xsl:transform>')
FROM author
WHERE name = 'Carl Sagan'

The result is the following XML value:

<?xml version="1.0" encoding="UTF-8"?>
<Details Mailaddress="carlsagan@nasa.gov" Country="USA" Birthyear="1913"/>

The function adds an XML declaration and returns the XML value serialized. The method is a

little less flexible. It requires that the XSLT is provided as an XMLTYPE value, which is quite
easy to do. The following statement produces the same result as the one using the function.

26

Introduction to Oracle and XML version 1.3.2 February 2022 nikos dimitrakas

SELECT a.info.transform(
XMLTYPE('<xsl:transform xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">
<xsl:output method="xml"/>
<xsl:template match="/">
<xsl:element name="Details">
<xsl:attribute name="Mailaddress"><xsl:value-of select="//Email"/></xsl:attribute>
<xsl:attribute name="Country"><xsl:value-of select="//Country"/></xsl:attribute>
<xsl:attribute name="Birthyear"><xsl:value-of select="//YearOfBirth"/></xsl:attribute>
</xsl:element>
</xsl:template>
</xsl:transform>'))
FROM author a
WHERE name = 'Carl Sagan'

Of course the XSLT doesn't have to be provided in this way. We could, for example, create a
table and store all of our XSLTs in it and then retrieve the one to use.

4.12 XQuery function ora:view

In some cases, we may want to access relational data from within XQuery. The function
ora:view makes this possible. It takes the name of a table or view as a parameter (and the
schema name as an optional parameter) and returns the content as an XML fragment with
one ROW element per row and one subelement for each column. The element names will be
in upper case by default. We could, for example, access all the countries of publishers (in an
XQuery statement) using the following statement:

SELECT XMLQUERY('for Sc in distinct-values(ora:view("publisher")//COUNTRY)
return element Country {Sc}'
RETURNING CONTENT)
FROM DUAL

The result is an XML fragment with one Country element for each unique country:

<Country>Austria</Country>
<Country>Belgium</Country>
<Country>China</Country>
<Country>England</Country>

The function ora:view is deprecated. Oracle suggests using fn:collection instead. It syntax is a
little different, but the result is the same. So ora:view(“publisher”) can be replaced by
fn:collection("oradb:/BOOKDB/PUBLISHER"). Here the table name must be qualified with the
schema name and both the schema name and table name are case sensitive. And the prefix
oradb: must be used. PUBLIC can be used to refer to the current schema.

27

Introduction to Oracle and XML version 1.3.2 February 2022 nikos dimitrakas

5 Epilogue

Oracle has been moving closer to the SQL standard with each new version. Many of the
Oracle specific functions have been deprecated and replaced by standard constructs. It is
therefore essential to follow the release information of each version. Some of the Oracle
specific features described here will probably be replaced in the years to come. The XQuery
Update Facility was the latest new feature to be implemented by Oracle. In the examples in
the previous chapter we looked at some of the features that are available in Oracle 19c.
There are many more details. But it has not been the goal of this introduction to cover
everything.

| hope you have found this introduction educational and fun. Do not hesitate to send
comments and suggestions that may help improve the next version of the compendium!

The Author
o dimitral

28

